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ABSTRACT

This paper deals with stress analysis of toroidal hole in an infinite body under uniform tension.
The problem is formulated as a system of singular integral equation with Cauchy-type singularity,
where the densities of body forces distributing in the r- and z- directions are unknown functions. In
order to satisfy the boundary conditions along the hole boundary, eight kinds of fundamental
density functions are introduced in the similar way of previous papers treating plane stress problems.
Then the body force densitics arc approximated by a linear combination of those fundamental
density functions and polynomials. In the analysis, shape of toroidal hole is varied systematically;
then, the magnitude and position of the maximum stress are shown in tables. The stress distributions
along the boundary are shown in figures. The accuracy of the present analysis is verified by
comparing the present results with the rcsults obtained by the conventional method. it is found that
this method gives rapid convergence numerical results for the stress distribution along the boundary
and stress concentration factors of toroidal hole are close to stress concentration factors of notched
round bar and deep notch when a/d—1.

1. Introduction

It is known that most engineering malterials contain some defects in the form of holes, cavities
and inclusions. To evaluate the effect of defects on the strength of structures, it is important to know
the stress concentration of defects in a material. Therefore, a lot of useful results of 3-D stress
concentration problems have been obtained by applying suitable numcrical methods. For example,
stress concentration problems of onc and two spherical cavities were treated by several researchers
[1-3]. However, there is few analyses for more than one ellipsoidal cavity is in a material. Because

the degree of stress concentration depends on the shape, size, location of the ellipsoidal cavity, the
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loading conditions and other factors.

In preceding paper the authors have considered ellipsoidal cavities using singular integral
equations of the body force method [4]. This method can be applied to the analysis of various
shapes and spacing of ellipsoidal cavities. In this paper, the method will be applied to a stress
concentration problem of toroidal hole. Then, stress concentration factor is calculated when the
shape of toroidal hole is varied systematically. The stress concentration factor of toroidal hole is

compared with stress concentration factor of notched round bar and deep notch.

2. Numerical Solution for Singular Integral Equations

Consider an infinite body having a toroidal hole under uniform z-direction tension as shown
in Fig. 1. The problem is formulated in terms of singular integral equations, that is the stress tield at
an arbitrary point (r=d+a cosy,z=b siny) when two ring forces act on another points (p=d+a
coso,,{=tb sine) in an infinite body [5]. The formation is simply based on the principle of
superposition. The integral equation is expressed by eq. (1), where the body force densities
distributed along the prospective boundaries in the r-, z-directions are to be unknown functions.

U/, Wcosw, +p,y)siny b+ [ KD (eyp)(@dds

/2

T2 - . -2
+ _MZK (o, y)p (o)ds = —o ] sin” v,

nn

* . . xI2 b, * 1
—(1/2){—p, (W)siny, +pz(l//)C()su/0}+L’:/2K£ (e, w)p, (cx)ds 0

+J-7r/2 KFZ(a - o - . )
o K Wp, (e)ds = -0 siny cosy,

12

\/, is an angle between the r-axis and the normal direction at the point (r,z). Equation (1) is virtually
the boundary conditions at the imaginary boundary. The first terms of eq. (1) represent the stress
due to the body force distributed on the @ boundary. The© boundary means the imaginary boundary

composed of the internal points that are infinitesimally apart {from the initial boundary [6, 7].

Sttt
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Fig. 1 Toroidal hole in an infinite body.
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To solve eq. (1) is to determine the body force densities P, (). p () in the region of ~m/2<
a<n/2. Here, consider auxiliary functions £,:(¢,) ~ £,4(®,) and P (@) ~ P.4(#,) defined by egs.
(2), (3) instead of densities p, (), p. ().

pL(e)={p (o) +p,(m—a)+p/(m+a)+p (-o)}/ 4 (2.2)
P () ={p (@) +p, (7 — ) = p;(m +0) = p,(~c0)}/ 4 (2.b)
pia(e) = (p] (&) = pl (7 — ) = pl (7 + )+ p} (—e)}/ 4 2.0)
P ={p (@)~ p](m=0)+p A+ )= p,(—o)}/ 4 (2.d)
pL(e) ={p(@)+p (m—0)+p (m+0)+p (—0)}/ 4 (3.2)
P (e)={pe)+p.(m—0o)—p.(m+a)— p.(—c)}/ 4 (3.b)
pas(0) ={pi(0) — pi(m—0) = pAm + )+ p (—0)}/ 4 (3.0)
Pl ={p (e) = p(m— o)+ p.(m + )~ p.(—c) }/ 4 (3.d)

These new functions P, (,) ~ pr.(¢) and p,,(¢,) ~ p.,(¢,) must satisly egs. (4), (5) because of
the definition (4), (5).

pr(e)=p,(m~o)=p, (x+a)=p) (-a) (4.2)
P (00) = ply(m— ) =—p, (T +a)=—p,(~0t) (4.b)
pry(e)=—p (T —a)=—p(T+a) = p,,(~) (4.c)
pr@)==p(T—0)=p(T+0)==p () (4.
P;(a) = p; (m—o)= P;(ﬂ +0o)= p;(-—a) (5.a)
P = pon(r—o)=—p,(t+a)=—p,(-) (5.5)
p(a) = —pL(r—a)=—p,(7+a)=p (~0) (5.c)
pu(e)=—p (Tt —a)=p,(T+a)=—p,(-a) (5.d)

It should be noted that determining auxiliary functions p,,(¢,) ~ p..(¢,) in the range O<o<m/2 is
equivalent to determining original unknown densities p, (), p.(@) in the range -m/2<o<n/2. In
other words, if the auxiliary functions p,, (¢,) ~ p;4(¢,¢,)arc given in the range 0<o<m/2, original

unknown functions p, (), p:(oc) arc expressed in the range -n/2<o<n/2 using eqs. (6), (7).

py () = p () + pya)+ pyy (o) + p (@) (6.2)
P, (=) = p, (@) + p,(0) = p (o) = p (@) (6.b)
p,(m+oy=p/ () = p;,(00) — (o) + p (@) (6.c)
p; (=00 = pi(a) = pry(a)+ py(0) = pr (o) (6.d)
pi(e) = pl(a)+pL(e)+ pli(e)+p,,(cr) (7.a)
pL (T =00y = pLy(e)+ p,(0) = pis(0) = pou(ex) (7.6)
P +a)=pL(a)— p.,(0) = pLla)+p,(0) (7.¢)
p.(—0) = p(e0) — p, (o) + p (o) — pl, () (7.d)

The fundamental density functions for the body forces in the r-, and z-directions are defined

by following expression:
w,, (o) = n (&) coso,w,, (&) =n (@) tan &, w,, (&) =n, (), w, (&) = n ()sino (])
w_ (@) = n (@) sina,w, (o) = n (@), w (&) = n () coto,w (o) = n (x)cos o 9
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Using egs. (8), (9), original body force densities are expressed as shown in eqgs. (10), (11).
po)=p (0w, ()  j=1,2,3,4 (10
pie) = pyw () j=1,2,3,4 (11)
where p,(0)~p.(®) and p,(0)~p,(c) are unknown functions, which have been called weight
functions. Then all p;(0)~p.(o) and p,,(0)~p,(0) must satisfy eq. (12).
foy=f(m-o)=f{m+te)={-e)[($.) : pa(0)~P.a() (12)
Finally, original unknown densities P, (00, p. (&) can be expressed in cq. (13) as linear combination
of the fundamental densities and the weight functions.
4 4
pr (o)=Y p(cow, (), pl(a) = leﬂ- ()w (@) (13)
=1 =
By considering the symmetry of the problem, w, (0), W (0t), W (@), W (@) are suitable.
Unknown functions P, (@), p.(¢t) can be expressed by the following equation.
p.(a)=p, (W, (0)+ P, (0w, (0),p. () = p, (0w, (&) + p_,(C)w,, (&) (14)
Here all unknown weight functions can be approximated as shown in egs. (15), (16) because all of

these must satisfy eq. (13).

M2 M2 M2 M/2

P,l(a) = Za,lt”(a)’prg(a) = Zbﬂtn ((x)’ p;2(a) = zcntn (a)’pz4(a) = zdntn(a) (15)
n=1 n=1 n=1 n=1

t, (o) = cos{2(n — D} (16)

Where M is the number of the collocation points in 0<o<27. Using the approximation method
mentioned above, we can obtain the system of linear equations for determining the coefficients a,,
b, ¢,, d,. Then, the magnitude and position of the maximum stress are calculated, when the shape of

the toroidal hole is changed systematically.

3. Numerical Results and Discussion

Table 1 shows the convergence of the values of stress 6,, 6, T,, along the toroidal hole boundary
with increasing the collocation number M when a/b=1, a/d=2/3, v=0.3, o =1 in Fig. 1. In the
present analysis, the boundary conditions (6,=0, 1,=0), which should be zero along the boundary,
are less than 10 even when M=16. Therefore, the boundary requirements can be highly satisfied
along the entire boundary.

In Table 2 the convergence of the stress concentration factors at point A (y=0° ) and B
(w=180" ) is shown to be compared with the conventional body force mcthod using step-function
when a/b=1, a/d=0.9, v=03, 0. =1 in Fig. 1. In table 2, the symbol O designates the
extrapolated value using the results M=32 and 48. The present results show rapid convergence than
the results using the step-function which need the extrapolation.

In Table 3 the stress concentration factor is shown to be compared with the conventional body
force method using step-function when a/b=1, v=0.3,0 =1 in Fig. 1. The solution of the notched

round bar [5, 8] and the dcep notch [9] are also shown in Table 3 for reference. The present results
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coincide with the results of the conventional body force method in the 4 digits. The stress
concentration factors of toroidal hole are close to stress concentration factors of notched
round bar and deep notch when a/d—1.

Table 1 Stress distribution along the boundary when a/b=1, a/d=2/3, v=0.3,6 =1 in Fig. 1.

Y (deg)| M S, G, Ty
8 2.69383 1.0X10° 0
0 12 2.69676 2.3X10° 0
16 2.69373 9.5X 107 0
20 2.69373 39X1071 0
8 1.37277 3.8X10* 3.9%X10°
40 12 137306 | -1.7X10” | -2.8X10°
16 1.37307 2.0X107 | -1.2X10%
20 1.37307 -3.6x10% 2.8X107"
8 | -0.62466 2.6X10" 6.9X10°
80 12 | -0.62409 29X107 [ 6.6X10°
16 | -0.62408 -1.5X10°% | 7.4%107
20 | -0.62408 -3.7x10% | 2.1X10°
8 | -0.76442 3.5X107 | -5.0x10°¢
100 12 | -0.76488 -3.3X107 1.8X107
16 | -0.76478 -1.5%X10°| 1.3X10°
20 | -0.7647R 3.1%X10% [ 54X10%
8 1.65287 1.8x 103 -1.1x10?
140 12 1.65293 -1.7X10° | 43%10°
16 1.6528 3.9X10% | -4.6X107
20 1.65281 1.3X10% | -92x10°
8 4.30702 1.2Xx10° 0
180 12 4.30589 -3.7X10° 0
16 4.30593 S2.1X10°%) 0
20 4.30593 -95X10%) ¢
Table 2 Convergence of the maximum stress when a/b=1, a/d=0.9, v=0.3,0, =lin Fig. 1.
Present analysis Step-function (P, P,3)
M KlA KlB Kl K!A K(B Kt
41 2.7032 8.3236 1.0242 2.6894 8.9249 1.0185
81 2.6529 8.4751 1.0422 2.6446 8.8165 1.0330
12| 2.6373 8.3918 1.0470 2.6387 8.5311 1.0403
16 | 2.6343 8.3802 1.0476 2.6368 8.4558 1.0435
20 | 2.6338 8.3785 1.0477 2.6353 8.4132 1.0458
24| 2.6337 8.3783 1.0477 2.6347 8.3989 1.0465
28 | 2.6336 8.3783 1.0477 2.6343 8.3884 1.0470
oo 2.633 8.373 1.048
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Table 3 Stress Concentration [actor for toroidal hole when a/b=1, v=0.3, ¢, =1 in Fig. 1.
[ K= 6.4/ 6, 0,=F/{n(d-a)’} ]

Step-
Present ep. Notched Deep
. function
analysis ) round bar notch
(pﬂ’pzz)
a/d K, K, K, [5] K, [8] K, [9]
0 3.0000 3.0000 3.065 3.065 o

0.1 | 2.5484 2.5484 2.601 2.593 3.1845
0.2 | 2.1836 2.1836 2.196 2.191 2.2272
0.3 | 1.8803 1.8803 1.869 1.871 1.8052
0.4 | 1.6309 1.6308 1.610 1.608 1.5571
0.5 | 1.4321 1.4320 1.412 1.411 1.3908
0.6 | 1.2820 1.2818 1.270 1.270 1.2705
0.7 | 1.1762 1.1761 1.172 1.172 1.1790
0.8 | 1.1036 1.1037 1.103 1.101 1.1069
0.9 11.0477 1.0481 1.048 1.046 1.0484

4. Conclusions

In this paper, the numerical solution of the singular integral equations based on the body force
method in toroidal hole problem was investigated. The conclusions were summarized as follows:
(1) The stress concentration problem of toroidal hole was formulated in terms of singular integral
equations of the body force method. The unknown functions were approximated by the product of
the fundamental density functions and polynomials.
(2) The accuracy of the present analysis was verified through examining the boundary conditions
and the convergence of the maximum stress. The present results could highly satisfy the boundary
conditions and showed rapid convergence than the conventional body force method.
(3) The stress concentration factors of toroidal hole were close to stress concentration factors of
notched round bar and deep notch when a/d—1.
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